1. de la Monte SM, Neusner A, Chu J, Lawton M. Epidemilogical Trends Strongly Suggest Exposures as Etiologic Agents in the Pathogenesis of Sporadic Alzheimer’s Disease, Diabetes Mellitus, and Non-Alcoholic Steatohepatitis. J Alzheimers Dis. 2009;17(3):519–529. [
PubMed]
2. Cummings JL. In: Definitions and diagnostic criteria. Third ed. Gauthier S, editor. London: Informa UK Limited; 2007.
3. Gustaw-Rothenberg K, Lerner A, Bonda DJ, Lee HG, Zhu X, Perry G, et al. Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med. 2010;4(1):15–26. [
PMC free article] [
PubMed]
4. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 1998;105(4-5):423–438.[
PubMed]
5. Hoyer S. The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. J Neural Transm. 2002;109(3):341–360. [
PubMed]
6. Hoyer S. Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol. 2004;490(1-3):115–125. [
PubMed]
7. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimers Dis. 2005;8(3):247–268. [
PubMed]
8. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease–is this type 3 diabetes? J Alzheimers Dis. 2005;7(1):63–80. [
PubMed]
9. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation
in vivo. Nature.2002;416(6880):535–539. [
PubMed]
10. Adolfsson R, Bucht G, Lithner F, Winblad B. Hypoglycemia in Alzheimer’s disease. Acta Med Scand.1980;208(5):387–388. [
PubMed]
11. Fujisawa Y, Sasaki K, Akiyama K. Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry. 1991;30(12):1219–1228.[
PubMed]
12. Caselli RJ, Chen K, Lee W, Alexander GE, Reiman EM. Correlating cerebral hypometabolism with future memory decline in subsequent converters to amnestic pre-mild cognitive impairment. Arch Neurol.2008;65(9):1231–1236. [
PubMed]
13. Mosconi L, Pupi A, De Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci. 2008;1147:180–195. [
PMC free article] [
PubMed]
14. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36(5):811–822. [
PMC free article] [
PubMed]
15. Langbaum JB, Chen K, Caselli RJ, Lee W, Reschke C, Bandy D, et al. Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E epsilon4 allele. Arch Neurol. 2010;67(4):462–468. [
PMC free article] [
PubMed]
16. Hoyer S, Nitsch R. Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J Neural Transm. 1989;75(3):227–232. [
PubMed]
17. Hoyer S, Nitsch R, Oesterreich K. Predominant abnormality in cerebral glucose utilization in late-onset dementia of the Alzheimer type: a cross-sectional comparison against advanced late-onset and incipient early-onset cases. J Neural Transm Park Dis Dement Sect. 1991;3(1):1–14. [
PubMed]
18. Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S. Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem. 2007;101(3):757–770. [
PubMed]
19. Hoyer S, Lee SK, Loffler T, Schliebs R. Inhibition of the neuronal insulin receptor. An
in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci. 2009;920:256–258. [
PubMed]
20. Labak M, Foniok T, Kirk D, Rushforth D, Tomanek B, Jasinski A, et al. Metabolic changes in rat brain following intracerebroventricular injections of streptozotocin: a model of sporadic Alzheimer’s disease.Acta Neurochir Suppl. 2010;106:177–181. [
PubMed]
21. Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci. 1998;112(5):1199–1208. [
PubMed]
22. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis. 2006;9(1):13–33.[
PubMed]
23. Blass JP, Gibson GE, Hoyer S. The role of the metabolic lesion in Alzheimer’s disease. J Alzheimers Dis. 2002;4(3):225–232. [
PubMed]
24. Blum-Degen D, Frolich L, Hoyer S, Riederer P. Altered regulation of brain glucose metabolism as a cause of neurodegenerative disorders? J Neural Transm Suppl. 1995;46:139–147. [
PubMed]
25. Hoyer S. Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. Adv Exp Med Biol. 2004;541:135–152. [
PubMed]
26. de la Monte SM, Wands JR. Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis.2005;7(1):45–61. [
PubMed]
27. Gammeltoft S, Fehlmann M, Van OE. Insulin receptors in the mammalian central nervous system: binding characteristics and subunit structure. Biochimie. 1985;67(10-11):1147–1153. [
PubMed]
28. Hill JM, Lesniak MA, Pert CB, Roth J. Autoradiographic localization of insulin receptors in rat brain: prominence in olfactory and limbic areas. Neuroscience. 1986;17(4):1127–1138. [
PubMed]
29. Broughton SK, Chen H, Riddle A, Kuhn SE, Nagalla S, Roberts CT, Jr, et al. Large-scale generation of highly enriched neural stem-cell-derived oligodendroglial cultures: maturation-dependent differences in insulin-like growth factor-mediated signal transduction. J Neurochem. 2007;100(3):628–638. [
PubMed]
30. D’Ercole AJ. Expression of insulin-like growth factor-I in transgenic mice. Ann N Y Acad Sci.1993;692:149–160. [
PubMed]
31. Freude S, Schilbach K, Schubert M. The role of IGF-1 receptor and insulin receptor signaling for the pathogenesis of Alzheimer’s disease: from model organisms to human disease. Curr Alzheimer Res.2009;6(3):213–223. [
PubMed]
32. Zeger M, Popken G, Zhang J, Xuan S, Lu QR, Schwab MH, et al. Insulin-like growth factor type 1 receptor signaling in the cells of oligodendrocyte lineage is required for normal
in vivo oligodendrocyte development and myelination. Glia. 2007;55(4):400–411. [
PMC free article] [
PubMed]
33. de la Monte SM, Longato L, Tong M, DeNucci S, Wands JR. The liver-brain axis of alcohol-mediated neurodegeneration: role of toxic lipids. Int J Environ Res Public Health. 2009;6(7):2055–2075.[
PMC free article] [
PubMed]
34. de la Monte SM, Longato L, Tong M, Wands JR. Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs.2009;10(10):1049–1060. [
PubMed]
35. Chesik D, De Keyser J, Wilczak N. Insulin-like growth factor system regulates oligodendroglial cell behavior: therapeutic potential in CNS. J Mol Neurosci. 2008;35(1):81–90. [
PubMed]
36. Gong X, Xie Z, Zuo H. Invivo insulin deficiency as a potential etiology for demyelinating disease. Med Hypotheses. 2008;71(3):399–403. [
PubMed]
37. Liang G, Cline GW, Macica CM. IGF-1 stimulates de novo fatty acid biosynthesis by Schwann cells during myelination. Glia. 2007;55(6):632–641. [
PubMed]
38. Ye P, Xing Y, Dai Z, D’Ercole AJ.
In vivo actions of insulin-like growth factor-I (IGF-I) on cerebellum development in transgenic mice: evidence that IGF-I increases proliferation of granule cell progenitors.Brain Res Dev Brain Res. 1996;95(1):44–54. [
PubMed]
39. Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118(1):5–36. [
PubMed]
40. Takashima A. Amyloid-beta, tau, and dementia. J Alzheimers Dis. 2009;17(4):729–736. [
PubMed]
41. Iqbal K, Liu F, Gong CX, Alonso Adel C, Grundke-Iqbal I. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69. [
PMC free article] [
PubMed]
42. Takashima A. (Drug development for tauopathy and Alzheimer’s disease) Nihon Shinkei Seishin Yakurigaku Zasshi. 2010;30(4):177–180. [
PubMed]
43. Arnaud L, Robakis NK, Figueiredo-Pereira ME. It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener Dis. 2006;3(6):313–319. [
PubMed]
44. Oddo S. The ubiquitin-proteasome system in Alzheimer’s disease. J Cell Mol Med. 2008;12(2):363–373. [
PMC free article] [
PubMed]
45. Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E. Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging. 2003;24(8):1079–1085. [
PubMed]
46. de la Monte SM, Ganju N, Banerjee K, Brown NV, Luong T, Wands JR. Partial rescue of ethanol-induced neuronal apoptosis by growth factor activation of phosphoinositol-3-kinase. Alcohol Clin Exp Res.2000;24(5):716–726. [
PubMed]
47. de la Monte SM, Neely TR, Cannon J, Wands JR. Ethanol impairs insulin-stimulated mitochondrial function in cerebellar granule neurons. Cell Mol Life Sci. 2001;58(12-13):1950. [
PubMed]
48. de la Monte SM, Wands JR. Chronic gestational exposure to ethanol impairs insulin-stimulated survival and mitochondrial function in cerebellar neurons. CMLS, Cell Mol Life Sci. 2002;59:882–893. [
PubMed]
49. Xu J, Eun Yeon J, Chang H, Tison G, Jun Chen G, Wands JR, et al. Ethanol impairs insulin-stimulated neuronal survival in the developing brain: Role of PTEN phosphatase. J Biol Chem. 2003;278(29):26929–26937. [
PubMed]
50. Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci. 2003;23(18):7084–7092.[
PubMed]
51. Schubert M, Gautam D, Surjo D, Ueki K, Baudler S, Schubert D, et al. Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A. 2004;101(9):3100–3105.[
PMC free article] [
PubMed]
52. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci.2003;116(7):1175–1186. [
PMC free article] [
PubMed]
53. De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev.2000;33(1):1–12. [
PubMed]
54. Fraser PE, Yu G, Levesque L, Nishimura M, Yang DS, Mount HT, et al. Presenilin function: connections to Alzheimer’s disease and signal transduction. Biochem Soc Symp. 2001;67:89–100. [
PubMed]
55. Grilli M, Ferrari Toninelli G, Uberti D, Spano P, Memo M. Alzheimer’s disease linking neurodegeneration with neurodevelopment. Funct Neurol. 2003;18(3):145–148. [
PubMed]
56. Mudher A, Chapman S, Richardson J, Asuni A, Gibb G, Pollard C, et al. Dishevelled regulates the metabolism of amyloid precursor protein via protein kinase C/mitogen-activated protein kinase and c-Jun terminal kinase. J Neurosci. 2001;21(14):4987–4995. [
PubMed]
57. Nishimura M, Yu G, Levesque G, Zhang DM, Ruel L, Chen F, et al. Presenilin mutations associated with Alzheimer disease cause defective intracellular trafficking of beta-catenin, a component of the presenilin protein complex. Nat Med. 1999;5(2):164–169. [
PubMed]
58. Bhat R, Xue Y, Berg S, Hellberg S, Ormo M, Nilsson Y, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003;278(46):45937–45945.[
PubMed]
59. Lebouvier T, Scales TM, Williamson R, Noble W, Duyckaerts C, Hanger DP, et al. The microtubule-associated protein tau is also phosphorylated on tyrosine. J Alzheimers Dis. 2009;18(1):1–9. [
PubMed]
60. Morales I, Farias G, Maccioni RB. Neuroimmunomodulation in the pathogenesis of Alzheimer’s disease. Neuroimmunomodulation. 2010;17(3):202–204. [
PubMed]
61. Hanger DP, Seereeram A, Noble W. Mediators of tau phosphorylation in the pathogenesis of Alzheimer’s disease. Expert Rev Neurother. 2009;9(11):1647–1666. [
PubMed]
62. de la Monte SM, Chen GJ, Rivera E, Wands JR. Neuronal thread protein regulation and interaction with microtubule-associated proteins in SH-Sy5y neuronal cells. Cell Mol Life Sci. 2003;60(12):2679–2691. [
PubMed]
63. Watson GS, Peskind ER, Asthana S, Purganan K, Wait C, Chapman D, et al. Insulin increases CSF Abeta42 levels in normal older adults. Neurology. 2003;60(12):1899–1903. [
PubMed]
64. Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, et al. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J Neurosci. 2001;21(8):2561–2570. [
PubMed]
65. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci. 2002;23(6):288–293. [
PubMed]
66. Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast. 2005;12(4):311–328. [
PMC free article] [
PubMed]
67. Ling X, Martins RN, Racchi M, Craft S, Helmerhorst E. Amyloid beta antagonizes insulin promoted secretion of the amyloid beta protein precursor. J Alzheimers Dis. 2002;4(5):369–374. [
PubMed]
68. Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R. Alzheimer’s beta-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci. 2002;22(10):RC221. [
PubMed]
69. Zheng WH, Kar S, Dore S, Quirion R. Insulin-like growth factor-1 (IGF-1): a neuroprotective trophic factor acting via the Akt kinase pathway. J Neural Transm Suppl. 2000;60:261–272. [
PubMed]
70. Dore S, Bastianetto S, Kar S, Quirion R. Protective and rescuing abilities of IGF-I and some putative free radical scavengers against beta-amyloid-inducing toxicity in neurons. Ann N Y Acad Sci.1999;890:356–364. [
PubMed]
71. Dore S, Kar S, Quirion R. Insulin-like growth factor I protects and rescues hippocampal neurons against beta-amyloid- and human amylin-induced toxicity. Proc Natl Acad Sci U S A. 1997;94(9):4772–4777. [
PMC free article] [
PubMed]
72. Evin G, Weidemann A. Biogenesis and metabolism of Alzheimer’s disease Abeta amyloid peptides.Peptides. 2002;23(7):1285–1297. [
PubMed]
73. Tsukamoto E, Hashimoto Y, Kanekura K, Niikura T, Aiso S, Nishimoto I. Characterization of the toxic mechanism triggered by Alzheimer’s amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells. J Neurosci Res. 2003;73(5):627–636. [
PubMed]
74. Iwangoff P, Armbruster R, Enz A, Meier-Ruge W. Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev. 1980;14(1-2):203–209. [
PubMed]
75. Sims NR, Bowen DM, Smith CC, Flack RH, Davison AN, Snowden JS, et al. Glucose metabolism and acetylcholine synthesis in relation to neuronal activity in Alzheimer’s disease. Lancet. 1980;1(8164):333–336. [
PubMed]
76. Hoyer S, Lannert H. Inhibition of the neuronal insulin receptor causes Alzheimer-like disturbances in oxidative/energy brain metabolism and in behavior in adult rats. Ann N Y Acad Sci. 1999. 1999;893:301–303. [
PubMed]
77. Chen GJ, Xu J, Lahousse SA, Caggiano NL, de la Monte SM. Transient hypoxia causes Alzheimer-type molecular and biochemical abnormalities in cortical neurons: potential strategies for neuroprotection.J Alzheimers Dis. 2003;5(3):209–228. [
PubMed]
78. Blasko I, Stampfer-Kountchev M, Robatscher P, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B. How chronic inflammation can affect the brain and support the development of Alzheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell. 2004;3(4):169–176. [
PubMed]
79. Eikelenboom P, van Gool WA. Neuroinflammatory perspectives on the two faces of Alzheimer’s disease. J Neural Transm. 2004;111(3):281–294. [
PubMed]
80. Tuppo EE, Arias HR. The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol.2005;37(2):289–305. [
PubMed]
81. Lorenzo A, Yankner BA. Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Ann N Y Acad Sci. 1996;777:89–95. [
PubMed]
82. Niikura T, Hashimoto Y, Tajima H, Nishimoto I. Death and survival of neuronal cells exposed to Alzheimer’s insults. J Neurosci Res. 2002;70(3):380–391. [
PubMed]
83. de la Monte SM, Tong M, Lester-Coll N, Plater M, Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer’s disease. J Alzheimers Dis.2006;10(1):89–109. [
PubMed]
84. Qiu C, De Ronchi D, Fratiglioni L. The epidemiology of the dementias: an update. Curr Opin Psychiatry. 2007;20(4):380–385. [
PubMed]
85. Craft S, Asthana S, Cook DG, Baker LD, Cherrier M, Purganan K, et al. Insulin dose-response effects on memory and plasma amyloid precursor protein in Alzheimer’s disease: interactions with apolipoprotein E genotype. Psychoneuroendocrinology. 2003;28(6):809–822. [
PubMed]
86. Craft S, Asthana S, Schellenberg G, Baker L, Cherrier M, Boyt AA, et al. Insulin effects on glucose metabolism, memory, and plasma amyloid precursor protein in Alzheimer’s disease differ according to apolipoprotein-E genotype. Ann N Y Acad Sci. 2000;903:222–228. [
PubMed]
87. Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, et al. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. Am J Pathol. 2004;164(4):1425–1434. [
PMC free article] [
PubMed]
88. Craft S. Insulin resistance and cognitive impairment: a view through the prism of epidemiology. Arch Neurol. 2005;62(7):1043–1044. [
PubMed]
89. Craft S. Insulin resistance syndrome and Alzheimer disease: pathophysiologic mechanisms and therapeutic implications. Alzheimer Dis Assoc Disord. 2006;20(4):298–301. [
PubMed]
90. Craft S. Insulin resistance and Alzheimer’s disease pathogenesis: potential mechanisms and implications for treatment. Curr Alzheimer Res. 2007;4(2):147–152. [
PubMed]
91. Pasquier F, Boulogne A, Leys D, Fontaine P. Diabetes mellitus and dementia. Diabetes Metab.2006;32(1):403–414. [
PubMed]
92. Verdelho A, Madureira S, Ferro JM, Basile AM, Chabriat H, Erkinjuntti T, et al. Differential impact of cerebral white matter changes, diabetes, hypertension and stroke on cognitive performance among non-disabled elderly. The LADIS study. J Neurol Neurosurg Psychiatry. 2007;78(12):1325–1330.[
PMC free article] [
PubMed]
93. Martins IJ, Hone E, Foster JK, Sunram-Lea SI, Gnjec A, Fuller SJ, et al. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol Psychiatry. 2006;11(8):721–736. [
PubMed]
94. Haan MN, Wallace R. Can dementia be prevented? Brain aging in a population-based context. Annu Rev Public Health. 2004;25:1–24. [
PubMed]
95. Launer LJ. Diabetes and brain aging: epidemiologic evidence. Curr Diab Rep. 2005;5(1):59–63.[
PubMed]
96. Luchsinger JA, Mayeux R. Cardiovascular risk factors and Alzheimer’s disease. Curr Atheroscler Rep.2004;6(4):261–266. [
PubMed]
97. Luchsinger JA, Reitz C, Patel B, Tang MX, Manly JJ, Mayeux R. Relation of diabetes to mild cognitive impairment. Arch Neurol. 2007;64(4):570–575. [
PubMed]
98. Whitmer RA. Type 2 diabetes and risk of cognitive impairment and dementia. Curr Neurol Neurosci Rep. 2007;7(5):373–380. [
PubMed]
99. Ristow M. Neurodegenerative disorders associated with diabetes mellitus. J Mol Med. 2004;82(8):510–529. [
PubMed]
100. Whitmer RA, Gunderson EP, Quesenberry CP, Jr, Zhou J, Yaffe K. Body mass index in midlife and risk of Alzheimer disease and vascular dementia. Curr Alzheimer Res. 2007;4(2):103–109. [
PubMed]
101. Nelson PT, Smith CD, Abner EA, Schmitt FA, Scheff SW, Davis GJ, et al. Human cerebral neuropathology of Type 2 diabetes mellitus. Biochim Biophys Acta. 2009;1792(5):454–469.[
PMC free article] [
PubMed]
102. Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 2004;53(2):474–481. [
PubMed]
103. Winocur G, Greenwood CE. Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging. 2005;S1:46–49. [
PubMed]
104. Winocur G, Greenwood CE, Piroli GG, Grillo CA, Reznikov LR, Reagan LP, et al. Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behav Neurosci. 2005;119(5):1389–1395. [
PubMed]
105. Moroz N, Tong M, Longato L, Xu H, de la Monte SM. Limited Alzheimer-type neurodegeneration in experimental obesity and Type 2 diabetes mellitus. J Alzheimers Dis. 2008;15(1):29–44. [
PubMed]
106. Lyn-Cook LE, Jr, Lawton M, Tong M, Silbermann E, Longato L, Jiao P, et al. Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis.J Alzheimers Dis. 2009;16(4):715–729. [
PMC free article] [
PubMed]
107. Luchsinger JA. Type 2 diabetes, related conditions, in relation and dementia: an opportunity for prevention? J Alzheimers Dis. 2010;20(3):723–736. [
PubMed]
108. Etiene D, Kraft J, Ganju N, Gomez-Isla T, Gemelli B, Hyman BT, et al. Cerebrovascular Pathology Contributes to the Heterogeneity of Alzheimer’s Disease. J Alzheimers Dis. 1998;1(2):119–134. [
PubMed]
109. Korf ES, White LR, Scheltens P, Launer LJ. Brain aging in very old men with type 2 diabetes: the Honolulu-Asia Aging Study. Diabetes Care. 2006;29(10):2268–2274. [
PubMed]
110. Huang K, Zou CC, Yang XZ, Chen XQ, Liang L. Carotid intima-media thickness and serum endothelial marker levels in obese children with metabolic syndrome. Arch Pediatr Adolesc Med.2010;164(9):846–851. [
PubMed]
111. Hotta O, Taguma Y, Chiba S, Sudou K, Horigome I, Yusa N, et al. Possible relationship between hyperinsulinemia and glomerular hypertrophy in nephrosclerosis. Ren Fail. 1996;18(2):271–278. [
PubMed]
112. Haudenschild CC, Van Sickle W, Chobanian AV. Response of the aorta of the obese Zucker rat to injury. Arteriosclerosis. 1981;1(3):186–191. [
PubMed]
113. Kubota T, Kubota N, Moroi M, Terauchi Y, Kobayashi T, Kamata K, et al. Lack of insulin receptor substrate-2 causes progressive neointima formation in response to vessel injury. Circulation.2003;107(24):3073–3080. [
PubMed]
114. Kincaid-Smith P. Hypothesis: obesity and the insulin resistance syndrome play a major role in end-stage renal failure attributed to hypertension and labelled ‘hypertensive nephrosclerosis’. J Hypertens.2004;22(6):1051–1055. [
PubMed]
115. Matsumoto H, Nakao T, Okada T, Nagaoka Y, Iwasawa H, Tomaru R, et al. Insulin resistance contributes to obesity-related proteinuria. Intern Med. 2005;44(6):548–553. [
PubMed]
116. Schmidt KS, Gallo JL, Ferri C, Giovannetti T, Sestito N, Libon DJ, et al. The neuropsychological profile of alcohol-related dementia suggests cortical and subcortical pathology. Dement Geriatr Cogn Disord. 2005;20(5):286–291. [
PubMed]
117. Kopelman MD, Thomson AD, Guerrini I, Marshall EJ. The Korsakoff syndrome: clinical aspects, psychology and treatment. Alcohol Alcohol. 2009;44(2):148–154. [
PubMed]
118. Elwing JE, Lustman PJ, Wang HL, Clouse RE. Depression, anxiety, and nonalcoholic steatohepatitis.Psychosom Med. 2006;68(4):563–569. [
PubMed]
119. Loftis JM, Huckans M, Ruimy S, Hinrichs DJ, Hauser P. Depressive symptoms in patients with chronic hepatitis C are correlated with elevated plasma levels of interleukin-1beta and tumor necrosis factor-alpha. Neurosci Lett. 2008;430(3):264–268. [
PMC free article] [
PubMed]
120. Perry W, Hilsabeck RC, Hassanein TI. Cognitive dysfunction in chronic hepatitis C: a review. Dig Dis Sci. 2008;53(2):307–321. [
PubMed]
121. Karaivazoglou K, Assimakopoulos K, Thomopoulos K, Theocharis G, Messinis L, Sakellaropoulos G, et al. Neuropsychological function in Greek patients with chronic hepatitis C. Liver Int. 2007;27(6):798–805. [
PubMed]
122. Weiss JJ, Gorman JM. Psychiatric behavioral aspects of comanagement of hepatitis C virus and HIV.Curr HIV/AIDS Rep. 2006;3(4):176–181. [
PMC free article] [
PubMed]
123. Tong M, Longato L, de la Monte SM. Early limited nitrosamine exposures exacerbate high fat diet-mediated type2 diabetes and neurodegeneration. BMC Endocr Disord. 2010;10(1):4. [
PMC free article][
PubMed]
124. Tong M, Neusner A, Longato L, Lawton M, Wands JR, de la Monte SM. Nitrosamine Exposure Causes Insulin Resistance Diseases: Relevance to Type 2 Diabetes Mellitus, Non-Alcoholic Steatohepatitis, and Alzheimer’s Disease. J Alzheimers Dis. 2009;17(4):827–844. [
PMC free article] [
PubMed]
125. Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab. 2008;34(2):649–657. [
PubMed]
126. Leonard BL, Watson RN, Loomes KM, Phillips AR, Cooper GJ. Insulin resistance in the Zucker diabetic fatty rat: a metabolic characterisation of obese and lean phenotypes. Acta Diabetol.2005;42(4):162–170. [
PubMed]
127. Kraegen EW, Cooney GJ. Free fatty acids and skeletal muscle insulin resistance. Curr Opin Lipidol.2008;19(3):235–241. [
PubMed]
128. Kao Y, Youson JH, Holmes JA, Al-Mahrouki A, Sheridan MA. Effects of insulin on lipid metabolism of larvae and metamorphosing landlocked sea lamprey, Petromyzon marinus. Gen Comp Endocrinol.1999;114(3):405–414. [
PubMed]
129. Holland WL, Summers SA. Sphingolipids, insulin resistance, and metabolic disease: new insights from
in vivo manipulation of sphingolipid metabolism. Endocr Rev. 2008;29(4):381–402.[
PMC free article] [
PubMed]
130. Langeveld M, Aerts JM. Glycosphingolipids and insulin resistance. Prog Lipid Res. 2009;48(3-4):196–205. [
PubMed]
131. Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res. 2006;451:42–72.[
PubMed]
132. Arboleda G, Huang TJ, Waters C, Verkhratsky A, Fernyhough P, Gibson RM. Insulin-like growth factor-1-dependent maintenance of neuronal metabolism through the phosphatidylinositol 3-kinase-Akt pathway is inhibited by C2-ceramide in CAD cells. Eur J Neurosci. 2007;25(10):3030–3038. [
PubMed]
133. Chalfant CE, Kishikawa K, Mumby MC, Kamibayashi C, Bielawska A, Hannun YA. Long chain ceramides activate protein phosphatase-1 and protein phosphatase-2A. Activation is stereospecific and regulated by phosphatidic acid. J Biol Chem. 1999;274(29):20313–20317. [
PubMed]
134. Liu B, Obeid LM, Hannun YA. Sphingomyelinases in cell regulation. Semin Cell Dev Biol.1997;8(3):311–322. [
PubMed]
135. Bryan L, Kordula T, Spiegel S, Milstien S. Regulation and functions of sphingosine kinases in the brain. Biochim Biophys Acta. 2008;1781(9):459–466. [
PMC free article] [
PubMed]
136. Van Brocklyn JR. Sphingolipid signaling pathways as potential therapeutic targets in gliomas. Mini Rev Med Chem. 2007;7(10):984–990. [
PubMed]
137. Bourbon NA, Sandirasegarane L, Kester M. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem. 2002;277(5):3286–3292. [
PubMed]
138. Hajduch E, Balendran A, Batty IH, Litherland GJ, Blair AS, Downes CP, et al. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia. 2001;44(2):173–183. [
PubMed]
139. Nogueira TC, Anhe GF, Carvalho CR, Curi R, Bordin S, Carpinelli AR. Involvement of phosphatidylinositol-3 kinase/AKT/PKCzeta/lambda pathway in the effect of palmitate on glucose-induced insulin secretion. Pancreas. 2008;37(3):309–315. [
PubMed]
140. Powell DJ, Hajduch E, Kular G, Hundal HS. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol. 2003;23(21):7794–7808. [
PMC free article] [
PubMed]
141. Consitt LA, Bell JA, Houmard JA. Intramuscular lipid metabolism, insulin action, and obesity.IUBMB Life. 2009;61(1):47–55. [
PMC free article] [
PubMed]
142. Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab.2007;5(3):167–179. [
PubMed]
143. Holland WL, Knotts TA, Chavez JA, Wang LP, Hoehn KL, Summers SA. Lipid mediators of insulin resistance. Nutr Rev. 2007;65(2):S39–46. [
PubMed]
144. Vistisen B, Hellgren LI, Vadset T, Scheede-Bergdahl C, Helge JW, Dela F, et al. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol. 2008;158(1):61–68. [
PubMed]
145. Zierath JR. The path to insulin resistance: paved with ceramides? Cell Metab. 2007;5(3):161–163.[
PubMed]
146. de la Monte SM, Tong M, Nguyen V, Setshedi M, Longato L, Wands JR. Ceramide-mediated insulin resistance and impairment of cognitive-motor functions. J Alzheimers Dis. 2010;21(3):967–984.[
PMC free article] [
PubMed]
147. Tong M, de la Monte SM. Mechanisms of ceramide-mediated neurodegeneration. J Alzheimers Dis.2009;16(4):705–714. [
PubMed]
148. Landreth G. PPARgamma agonists as new therapeutic agents for the treatment of Alzheimer’s disease.Exp Neurol. 2006;199(2):245–248. [
PubMed]
149. Heneka MT, Landreth GE. PPARs in the brain. Biochim Biophys Acta. 2007;1771(8):1031–1045.[
PubMed]
150. Landreth G. Therapeutic use of agonists of the nuclear receptor PPARgamma in Alzheimer’s disease.Curr Alzheimer Res. 2007;4(2):159–164. [
PubMed]
151. Longato L, Tong M, Wands JR, De la Monte SM. Ex Vivo Model of Steatohepatitis Using Precision-Cut Liver Slice Cultures. Hepatology. 2010;52(S1):454A.
152. Marchesini G, Marzocchi R. Metabolic syndrome and NASH. Clin Liver Dis. 2007;11(1):105–117.[
PubMed]
153. Nicolls MR. The clinical and biological relationship between Type II diabetes mellitus and Alzheimer’s disease. Curr Alzheimer Res. 2004;1(1):47–54. [
PubMed]
154. Papandreou D, Rousso I, Mavromichalis I. Update on non-alcoholic fatty liver disease in children.Clin Nutr. 2007;26(4):409–415. [
PubMed]
155. Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol.2007;22(S1):S20–27. [
PubMed]
156. Yeh MM, Brunt EM. Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol.2007;128(5):837–847. [
PubMed]
157. Biju MP, Paulose CS. Brain glutamate dehydrogenase changes in streptozotocin diabetic rats as a function of age. Biochem Mol Biol Int. 1998;44(1):1–7. [
PubMed]
158. Hoyer S, Lannert H, Noldner M, Chatterjee SS. Damaged neuronal energy metabolism and behavior are improved by Ginkgo biloba extract (EGb 761) J Neural Transm. 1999;106(11-12):1171–1188. [
PubMed]
159. Nitta A, Murai R, Suzuki N, Ito H, Nomoto H, Katoh G, et al. Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicol Teratol. 2002;24(5):695–701. [
PubMed]
160. Weinstock M, Shoham S. Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity. J Neural Transm. 2004;111(3):347–366.[
PubMed]
161. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas.Physiol Res. 2001;50(6):537–546. [
PubMed]
162. Bolzan AD, Bianchi MS. Genotoxicity of streptozotocin. Mutat Res. 2002;512(2-3):121–134.[
PubMed]
163. Koulmanda M, Qipo A, Chebrolu S, O’Neil J, Auchincloss H, Smith RN. The effect of low versus high dose of streptozotocin in cynomolgus monkeys (Macaca fascilularis) Am J Transplant.2003;3(3):267–272. [
PubMed]
164. de la Monte SM, Tong M. Mechanisms of Nitrosamine-Mediated Neurodegeneration: Potential Relevance to Sporadic Alzheimer’s Disease. J Alzheimers Dis. 2009;17(4):817–825. [
PubMed]
165. de la Monte SM, Tong M, Lawton M, Longato L. Nitrosamine exposure exacerbates high fat diet-mediated type 2 diabetes mellitus, non-alcoholic steatohepatitis, and neurodegeneration with cognitive impairment. Mol Neurodegener. 2009;4:54. [
PMC free article] [
PubMed]
166. Allan CL, Sexton CE, Welchew D, Ebmeier KP. Imaging and biomarkers for Alzheimer’s disease.Maturitas. 2010;65(2):138–142. [
PubMed]
167. Meyer JS, Huang J, Chowdhury M. MRI abnormalities associated with mild cognitive impairments of vascular (VMCI) versus neurodegenerative (NMCI) types prodromal for vascular and Alzheimer’s dementias. Curr Alzheimer Res. 2005;2(5):579–585. [
PubMed]
168. Schmidt SL, Correa PL, Tolentino JC, Manhaes AC, Felix RM, Azevedo JC, et al. Value of combining activated brain FDG-PET and cardiac MIBG for the differential diagnosis of dementia: differentiation of dementia with Lewy bodies and Alzheimer disease when the diagnoses based on clinical and neuroimaging criteria are difficult. Clin Nucl Med. 2008;33(6):398–401. [
PubMed]
169. Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50(10):1638–1645. [
PubMed]
170. O’Brien JT. Role of imaging techniques in the diagnosis of dementia. Br J Radiol. 2007;80(2):S71–77.[
PubMed]
171. Ibanez V, Deiber MP. Functional imaging in mild cognitive impairment and early Alzheimer’s disease: is it pertinent? Front Neurol Neurosci. 2009;24:30–38. [
PubMed]
172. Finelli PF. Positron emission tomography in diagnosis of visual variant Alzheimer disease. J Neuroophthalmol. 2009;29(2):149–150. [
PubMed]
173. Morbelli S, Piccardo A, Villavecchia G, Dessi B, Brugnolo A, Piccini A, et al. Mapping brain morphological and functional conversion patterns in amnestic MCI: a voxel-based MRI and FDG-PET study. Eur J Nucl Med Mol Imaging. 2010;37(1):36–45. [
PubMed]
174. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an (11C)PIB and (18F)FDG PET study. Neurology. 2007;68(7):501–508.[
PubMed]
175. Krolak-Salmon P. What use of biological markers for the diagnosis of Alzheimer’s disease and associated disorders? Psychol Neuropsychiatr Vieil. 2010;8(1):25–31. [
PubMed]
176. Seaquist ER, Chen W, Benedict LE, Ugurbil K, Kwag JH, Zhu XH, et al. Insulin reduces the BOLD response but is without effect on the VEP during presentation of a visual task in humans. J Cereb Blood Flow Metab. 2007;27(1):154–160. [
PubMed]
177. Kuczynski B, Targan E, Madison C, Weiner M, Zhang Y, Reed B, et al. White matter integrity and cortical metabolic associations in aging and dementia. Alzheimers Dement. 2010;6(1):54–62.[
PMC free article] [
PubMed]
178. Roriz-Filho SJ, Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta. 2009;1792(5):432–443. [
PubMed]
179. Pauwels EK, Volterrani D, Mariani G. Biomarkers for Alzheimer’s disease. Drug News Perspect.2009;22(3):151–160. [
PubMed]
180. Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer’s disease. Alzheimers Dement. 2008;4(1):38–48. [
PubMed]
181. Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer’s disease. Nature. 2009;461(7266):916–922. [
PMC free article] [
PubMed]
182. Matsubara E. Biological marker for Alzheimer’s disease. Brain Nerve. 2010;62(7):769–775. [
PubMed]
183. Trojanowski JQ, Vandeerstichele H, Korecka M, Clark CM, Aisen PS, Petersen RC, et al. Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimers Dement.2010;6(3):230–238. [
PMC free article] [
PubMed]
184. Blennow K, Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer’s disease. J Alzheimers Dis.2009;18(2):413–417. [
PubMed]
185. Roher AE, Maarouf CL, Sue LI, Hu Y, Wilson J, Beach TG. Proteomics-derived cerebrospinal fluid markers of autopsy-confirmed Alzheimer’s disease. Biomarkers. 2009;14(7):493–501. [
PMC free article][
PubMed]
186. Monge-Argiles JA, Sanchez-Paya J, Munoz-Ruiz C, Pampliega-Perez A, Montoya-Gutierrez J, Leiva-Santana C. Biomarkers in the cerebrospinal fluid of patients with mild cognitive impairment: a meta-analysis of their predictive capacity for the diagnosis of Alzheimer’s disease. Rev Neurol. 2010;50(4):193–200. [
PubMed]
187. van Rossum IA, Vos S, Handels R, Visser PJ. Biomarkers as predictors for conversion from mild cognitive impairment to Alzheimer-type dementia: implications for trial design. J Alzheimers Dis.2010;20(3):881–891. [
PubMed]
188. Ringman JM, Younkin SG, Pratico D, Seltzer W, Cole GM, Geschwind DH, et al. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology. 2008;71(2):85–92. [
PubMed]
189. Mattsson N, Blennow K, Zetterberg H. Inter-laboratory variation in cerebrospinal fluid biomarkers for Alzheimer’s disease: united we stand, divided we fall. Clin Chem Lab Med. 2010;48(5):603–607. [
PubMed]
190. Zhou B, Teramukai S, Yoshimura K, Fukushima M. Validity of cerebrospinal fluid biomarkers as endpoints in early-phase clinical trials for Alzheimer’s disease. J Alzheimers Dis. 2009;18(1):89–102.[
PubMed]
191. Carter MD, Simms GA, Weaver DF. The development of new therapeutics for Alzheimer’s disease.Clin Pharmacol Ther. 2010;88(4):475–486. [
PubMed]
192. Forstl H, Werheid K, Ulm K, Schonknecht P, Schmidt R, Pantel J, et al. MCI-plus: mild cognitive impairment with rapid progression. Part II: Biomarkers and research methods. Dtsch Med Wochenschr.2009;134(3):88–91. [
PubMed]
193. Mattsson N, Blennow K, Zetterberg H. CSF biomarkers: pinpointing Alzheimer pathogenesis. Ann N Y Acad Sci. 2009;1180:28–35. [
PubMed]
194. Hampel H, Broich K, Hoessler Y, Pantel J. Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin Neurosci. 2009;11(2):141–157.[
PMC free article] [
PubMed]
195. Hu WT, Chen-Plotkin A, Arnold SE, Grossman M, Clark CM, Shaw LM, et al. Biomarker discovery for Alzheimer’s disease, frontotemporal lobar degeneration, and Parkinson’s disease. Acta Neuropathol.2010;120(3):385–399. [
PMC free article] [
PubMed]
196. Galimberti D, Fenoglio C, Scarpini E. Inflammation in neurodegenerative disorders: friend or foe?Curr Aging Sci. 2008;1(1):30–41. [
PubMed]
197. Lavados M, Guillon M, Mujica MC, Rojo LE, Fuentes P, Maccioni RB. Mild cognitive impairment and Alzheimer patients display different levels of redox-active CSF iron. J Alzheimers Dis.2008;13(2):225–232. [
PubMed]
198. Korolainen MA, Pirttila T. Cerebrospinal fluid, serum and plasma protein oxidation in Alzheimer’s disease. Acta Neurol Scand. 2009;119(1):32–38. [
PubMed]
199. Isobe C, Abe T, Terayama Y. Levels of reduced and oxidized coenzyme Q-10 and 8-hydroxy-2′-deoxyguanosine in the CSF of patients with Alzheimer’s disease demonstrate that mitochondrial oxidative damage and/or oxidative DNA damage contributes to the neurodegenerative process. J Neurol.2010;257(3):399–404. [
PubMed]
200. Isobe C, Abe T, Terayama Y. Increase in the oxidized/total coenzyme Q-10 ratio in the cerebrospinal fluid of Alzheimer’s disease patients. Dement Geriatr Cogn Disord. 2009;28(5):449–454. [
PubMed]
201. Schneider P, Hampel H, Buerger K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci Ther. 2009;15(4):358–374. [
PubMed]
202. de Barry J, Liegeois CM, Janoshazi A. Protein kinase C as a peripheral biomarker for Alzheimer’s disease. Exp Gerontol. 2010;45(1):64–69. [
PubMed]
203. Eikelenboom P, van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, van Gool WA. Neuroinflammation – an early event in both the history and pathogenesis of Alzheimer’s disease.Neurodegener Dis. 2010;7(1-3):38–41. [
PubMed]
204. Olson L, Humpel C. Growth factors and cytokines/chemokines as surrogate biomarkers in cerebrospinal fluid and blood for diagnosing Alzheimer’s disease and mild cognitive impairment. Exp Gerontol. 2010;45(1):41–46. [
PubMed]
205. Siemers E, DeMattos RB, May PC, Dean RA. Role of biochemical Alzheimer’s disease biomarkers as end points in clinical trials. Biomark Med. 2010;4(1):81–89. [
PubMed]
206. Thompson PW, Lockhart A. Monitoring the amyloid beta-peptide
in vivo–caveat emptor. Drug Discov Today. 2009;14(5-6):241–251. [
PubMed]
207. Neumann KF, Rojo L, Navarrete LP, Farias G, Reyes P, Maccioni RB. Insulin resistance and Alzheimer’s disease: molecular links & clinical implications. Curr Alzheimer Res. 2008;5(5):438–447.[
PubMed]
208. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D., Jr Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50(1):164–168. [
PubMed]
209. Molina JA, Jimenez-Jimenez FJ, Vargas C, Gomez P, de Bustos F, Gomez-Escalonilla C, et al. Cerebrospinal fluid levels of insulin in patients with Alzheimer’s disease. Acta Neurol Scand.2002;106(6):347–350. [
PubMed]
210. Tham A, Nordberg A, Grissom FE, Carlsson-Skwirut C, Viitanen M, Sara VR. Insulin-like growth factors and insulin-like growth factor binding proteins in cerebrospinal fluid and serum of patients with dementia of the Alzheimer type. J Neural Transm Park Dis Dement Sect. 1993;5(3):165–176. [
PubMed]
211. Salehi Z, Mashayekhi F, Naji M. Insulin like growth factor-1 and insulin like growth factor binding proteins in the cerebrospinal fluid and serum from patients with Alzheimer’s disease. Biofactors.2008;33(2):99–106. [
PubMed]
212. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215(4537):1237–1239. [
PubMed]
213. Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol.2002;68(3):209–245. [
PubMed]
214. Murase K, Nabeshima T, Robitaille Y, Quirion R, Ogawa M, Hayashi K. NGF level of is not decreased in the serum, brain-spinal fluid, hippocampus, or parietal cortex of individuals with Alzheimer’s disease. Biochem Biophys Res Commun. 1993;193(1):198–203. [
PubMed]
215. Massaro AR, Soranzo C, Bigon E, Battiston S, Morandi A, Carnevale A, et al. Nerve growth factor (NGF) in cerebrospinal fluid (CSF) from patients with various neurological disorders. Ital J Neurol Sci.1994;15(2):105–108. [
PubMed]
216. Serrano-Sanchez T, Robinson-Agramonte MA, Lorigados-Pedre L, Diaz-Armesto I, Gonzalez-Fraguela ME, Dorta-Contreras AJ. Endogenous nerve growth factor in patients with Alzheimer s disease.Rev Neurol. 2001;32(9):825–828. [
PubMed]
217. Hock C, Heese K, Muller-Spahn F, Huber P, Riesen W, Nitsch RM, et al. Increased CSF levels of nerve growth factor in patients with Alzheimer’s disease. Neurology. 2000;54(10):2009–2011. [
PubMed]
218. Mashayekhi F, Salehin Z. Cerebrospinal fluid nerve growth factor levels in patients with Alzheimer’s disease. Ann Saudi Med. 2006;26(4):278–282. [
PubMed]
219. Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, et al. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer’s disease and vascular dementia.Neurobiol Aging. 2002;23(2):237–243. [
PubMed]
220. de la Monte SM, Wands JR. Alzheimer-associated neuronal thread protein mediated cell death is linked to impaired insulin signaling. J Alzheimers Dis. 2004;6(3):231–242. [
PubMed]
221. de la Monte SM, Wands JR. Neurodegeneration changes in primary central nervous system neurons transfected with the Alzheimer-associated neuronal thread protein gene. Cell Mol Life Sci. 2001;58(5-6):844–849. [
PubMed]
222. de la Monte SM, Wands JR. Alzheimer-associated neuronal thread protein-induced apoptosis and impaired mitochondrial function in human central nervous system-derived neuronal cells. J Neuropathol Exp Neurol. 2001;60(2):195–207. [
PubMed]
223. Vawter MP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGFbeta1 and TGFbeta2 concentrations are elevated in Parkinson’s disease in ventricular cerebrospinal fluid. Exp Neurol.1996;142(2):313–322. [
PubMed]
224. Blasko I, Lederer W, Oberbauer H, Walch T, Kemmler G, Hinterhuber H, et al. Measurement of thirteen biological markers in CSF of patients with Alzheimer’s disease and other dementias. Dement Geriatr Cogn Disord. 2006;21(1):9–15. [
PubMed]
225. Zetterberg H, Andreasen N, Blennow K. Increased cerebrospinal fluid levels of transforming growth factor-beta1 in Alzheimer’s disease. Neurosci Lett. 2004;367(2):194–196. [
PubMed]
226. Rota E, Bellone G, Rocca P, Bergamasco B, Emanuelli G, Ferrero P. Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurol Sci. 2006;27(1):33–39.[
PubMed]
227. Mashayekhi F, Hadavi M, Vaziri HR, Naji M. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with Alzheimer’s disease. J Clin Neurosci. 2010;17(3):357–359. [
PubMed]
228. Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, et al. Human choroid plexus growth factors: What are the implications for CSF dynamics in Alzheimer’s disease? Exp Neurol.2001;167(1):40–47. [
PubMed]
229. Blennow K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx.2004;1(2):213–225. [
PMC free article] [
PubMed]
230. de la Monte SM, Wands JR. The AD7c-ntp neuronal thread protein biomarker for detecting Alzheimer’s disease. Front Biosci. 2002;7:989–996. [
PubMed]
231. Averback P. Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF.Neurology. 2000;55(7):1068–1069. [
PubMed]
232. de la Monte SM, Volicer L, Hauser SL, Wands JR. Increased levels of neuronal thread protein in cerebrospinal fluid of patients with Alzheimer’s disease. Ann Neurol. 1992;32(6):733–742. [
PubMed]
233. Flirski M, Sobow T. Biochemical markers and risk factors of Alzheimer’s disease. Curr Alzheimer Res. 2005;2(1):47–64. [
PubMed]
234. Kahle PJ, Jakowec M, Teipel SJ, Hampel H, Petzinger GM, Di Monte DA, et al. Combined assessment of tau and neuronal thread protein in Alzheimer’s disease CSF. Neurology. 2000;54(7):1498–1504. [
PubMed]
235. Levy S, McConville M, Lazaro GA, Averback P. Competitive ELISA studies of neural thread protein in urine in Alzheimer’s disease. J Clin Lab Anal. 2007;21(1):24–33. [
PubMed]
236. Goodman I, Golden G, Flitman S, Xie K, McConville M, Levy S, et al. A multi-center blinded prospective study of urine neural thread protein measurements in patients with suspected Alzheimer’s disease. J Am Med Dir Assoc. 2007 Jan;8(1):21–30. [
PubMed]
237. Munzar M, Levy S, Rush R, Averback P. Clinical study of a urinary competitve ELISA for neural thread protein in Alzheimer disease. Neurol Clin Neurophysiol. 2002;2002(1):2–8. [
PubMed]
238. Ghanbari H, Ghanbari K, Beheshti I, Munzar M, Vasauskas A, Averback P. Biochemical assay for AD7C-NTP in urine as an Alzheimer’s disease marker. J Clin Lab Anal. 1998;12(5):285–288. [
PubMed]
239. Proto C, Romualdi D, Cento RM, Spada RS, Di Mento G, Ferri R, et al. Plasma levels of neuropeptides in Alzheimer’s disease. Gynecol Endocrinol. 2006;22(4):213–218. [
PubMed]
240. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004;29(10):1326–1334. [
PubMed]
241. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology. 2007;32(1):239–243. [
PubMed]
242. Dhamoon MS, Noble JM, Craft S. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2009;72(3):292–293. [
PubMed]
243. Hallschmid M, Benedict C, Born J, Kern W. Targeting metabolic and cognitive pathways of the CNS by intranasal insulin administration. Expert Opin Drug Deliv. 2007;4(4):319–322. [
PubMed]
244. Reger MA, Watson GS, Frey WH, 2nd, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype.Neurobiol Aging. 2006;27(3):451–458. [
PubMed]
245. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves cognition and modulates {beta}-amyloid in early AD. Neurology. 2008;70(6):440–448. [
PubMed]
246. Schmidt H, Kern W, Giese R, Hallschmid M, Enders A. Intranasal insulin to improve developmental delay in children with 22q13 deletion syndrome: an exploratory clinical trial. J Med Genet.2009;46(4):217–222. [
PubMed]
247. Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol. 2010;41(2-3):392–409. [
PMC free article] [
PubMed]
248. Dunnett SB, Fibiger HC. Role of forebrain cholinergic systems in learning and memory: relevance to the cognitive deficits of aging and Alzheimer’s dementia. Prog Brain Res. 1993;98:413–420. [
PubMed]
249. Puro DG, Agardh E. Insulin-mediated regulation of neuronal maturation. Science.1984;225(4667):1170–1172. [
PubMed]
250. Gomez JM. Growth hormone and insulin-like growth factor-I as an endocrine axis in Alzheimer’s disease. Endocr Metab Immune Disord Drug Targets. 2008;8(2):143–151. [
PubMed]
251. Takada-Takatori Y, Kume T, Sugimoto M, Katsuki H, Sugimoto H, Akaike A. Acetylcholinesterase inhibitors used in treatment of Alzheimer’s disease prevent glutamate neurotoxicity via nicotinic acetylcholine receptors and phosphatidylinositol 3-kinase cascade. Neuropharmacology. 2006;51(3):474–486. [
PubMed]
252. Forette F, Hauw JJ. Alzheimer’s disease: from brain lesions to new drugs. Bull Acad Natl Med.2008;192(2):363–378. [
PubMed]
253. Hinoi E, Takarada T, Tsuchihashi Y, Yoneda Y. Glutamate transporters as drug targets. Curr Drug Targets CNS Neurol Disord. 2005;4(2):211–220. [
PubMed]
254. Schaeffer EL, Gattaz WF. Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: participation of the phospholipase A2 enzyme. Psychopharmacology (Berl)2008;198(1):1–27. [
PubMed]
255. Sano M, Grossman H, Van Dyk K. Preventing Alzheimer’s disease : separating fact from fiction. CNS Drugs. 2008;22(11):887–902. [
PubMed]
256. Galimberti D, Scarpini E. Treatment of Alzheimer’s disease: symptomatic and disease-modifying approaches. Curr Aging Sci. 2010;3(1):46–56. [
PubMed]
257. Kovacs T. Therapy of Alzheimer disease. Neuropsychopharmacol Hung. 2009;11(1):27–33. [
PubMed]
258. Farlow MR, Miller ML, Pejovic V. Treatment options in Alzheimer’s disease: maximizing benefit, managing expectations. Dement Geriatr Cogn Disord. 2008;25(5):408–422. [
PubMed]
259. Sugimoto H. Development of anti-Alzheimer’s disease drug based on beta-amyloid hypothesis.Yakugaku Zasshi. 2010;130(4):521–526. [
PubMed]
260. Sobow T. Combination treatments in Alzheimer’s disease: risks and benefits. Expert Rev Neurother.2010;10(5):693–702. [
PubMed]
261. Cornelli U. Treatment of Alzheimer’s disease with a cholinesterase inhibitor combined with antioxidants. Neurodegener Dis. 2010;7(1-3):193–202. [
PubMed]
262. Yancheva S, Ihl R, Nikolova G, Panayotov P, Schlaefke S, Hoerr R. Ginkgo biloba extract EGb 761(R), donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: a randomised, double-blind, exploratory trial. Aging Ment Health. 2009;13(2):183–190. [
PubMed]
263. Molina PE, Tepper PG, Yousef KA, Abumrad NN, Lang CH. Central NMDA enhances hepatic glucose output and non-insulin-mediated glucose uptake by a nonadrenergic mechanism. Brain Res.1994;634(1):41–48. [
PubMed]
264. Sun X, Yao H, Douglas RM, Gu XQ, Wang J, Haddad GG. Insulin/PI3K signaling protects dentate neurons from oxygen-glucose deprivation in organotypic slice cultures. J Neurochem. 2010;112(2):377–388. [
PubMed]
265. Hull M, Berger M, Heneka M. Disease-modifying therapies in Alzheimer’s disease: how far have we come? Drugs. 2006;66(16):2075–2093. [
PubMed]
266. Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem.2009;110(4):1129–1134. [
PubMed]
267. Lemere CA. Developing novel immunogens for a safe and effective Alzheimer’s disease vaccine. Prog Brain Res. 2009;175:83–93. [
PMC free article] [
PubMed]
268. Wilcock DM, Colton CA. Immunotherapy, vascular pathology, and microhemorrhages in transgenic mice. CNS Neurol Disord Drug Targets. 2009;8(1):50–64. [
PMC free article] [
PubMed]
269. Vasilevko V, Head E. Immunotherapy in a natural model of Abeta pathogenesis: the aging beagle.CNS Neurol Disord Drug Targets. 2009;8(2):98–113. [
PubMed]
270. Kerchner GA, Boxer AL. Bapineuzumab. Expert Opin Biol Ther. 2010;10(7):1121–1130.[
PMC free article] [
PubMed]
271. Boche D, Denham N, Holmes C, Nicoll JA. Neuropathology after active Abeta42 immunotherapy: implications for Alzheimer’s disease pathogenesis. Acta Neuropathol. 2010;120(3):369–384. [
PubMed]
272. Giacobini E, Becker RE. One hundred years after the discovery of Alzheimer’s disease. A turning point for therapy? J Alzheimers Dis. 2007;12(1):37–52. [
PubMed]
273. Kuzuhara S. Treatment strategy of Alzheimer’s disease: pause in clinical trials of Abeta vaccine and next steps. Brain Nerve. 2010;62(7):659–666. [
PubMed]
274. Wolfe MS. Selective amyloid-beta lowering agents. BMC Neurosci. 2008;9(S2):S4.[
PMC free article] [
PubMed]
275. Bergmans BA, De Strooper B. gamma-secretases: from cell biology to therapeutic strategies. Lancet Neurol. 2010;9(2):215–226. [
PubMed]
276. Henley DB, May PC, Dean RA, Siemers ER. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother.2009;10(10):1657–1664. [
PubMed]
277. Guardia-Laguarta C, Pera M, Lleo A. gamma-Secretase as a therapeutic target in Alzheimer’s disease.Curr Drug Targets. 2010;11(4):506–517. [
PubMed]
278. Frisoni GB, Delacourte A. Neuroimaging outcomes in clinical trials in Alzheimer’s disease. J Nutr Health Aging. 2009;13(3):209–212. [
PubMed]
279. Krishnaswamy S, Verdile G, Groth D, Kanyenda L, Martins RN. The structure and function of Alzheimer’s gamma secretase enzyme complex. Crit Rev Clin Lab Sci. 2009;46(5-6):282–301. [
PubMed]
280. Frisardi V, Solfrizzi V, Imbimbo PB, Capurso C, D’Introno A, Colacicco AM, et al. Towards disease-modifying treatment of Alzheimer’s disease: drugs targeting beta-amyloid. Curr Alzheimer Res.2010;7(1):40–55. [
PubMed]
281. Costa RM, Drew C, Silva AJ. Notch to remember. Trends Neurosci. 2005;28(8):429–435. [
PubMed]
282. Augelli-Szafran CE, Wei HX, Lu D, Zhang J, Gu Y, Yang T, et al. Discovery of notch-sparing gamma-secretase inhibitors. Curr Alzheimer Res. 2010;7(3):207–209. [
PMC free article] [
PubMed]
283. Tomita T. Alzheimer’s disease treatment by inhibition/modulation of the gamma-secretase activity.Rinsho Shinkeigaku. 2009;49(11):845–847. [
PubMed]
284. Imbimbo BP. An update on the efficacy of non-steroidal anti-inflammatory drugs in Alzheimer’s disease. Expert Opin Investig Drugs. 2009;18(8):1147–1168. [
PubMed]
285. Bhat RV, Budd Haeberlein SL, Avila J. Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem. 2004;89(6):1313–1317. [
PubMed]
286. Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease.Neuropharmacology. 2010;58(3):561–568. [
PubMed]
287. Gong CX, Grundke-Iqbal I, Iqbal K. Targeting tau protein in Alzheimer’s disease. Drugs Aging.2010;27(5):351–365. [
PubMed]
288. Avila J, Wandosell F, Hernandez F. Role of glycogen synthase kinase-3 in Alzheimer’s disease pathogenesis and glycogen synthase kinase-3 inhibitors. Expert Rev Neurother. 2010;10(5):703–710.[
PubMed]
289. Beauchard A, Laborie H, Rouillard H, Lozach O, Ferandin Y, Le Guevel R, et al. Synthesis and kinase inhibitory activity of novel substituted indigoids. Bioorg Med Chem. 2009;17(17):6257–6263. [
PubMed]
290. Martinez A, Perez DI. GSK-3 inhibitors: a ray of hope for the treatment of Alzheimer’s disease? J Alzheimers Dis. 2008;15(2):181–191. [
PubMed]
291. Camins A, Verdaguer E, Junyent F, Yeste-Velasco M, Pelegri C, Vilaplana J, et al. Potential mechanisms involved in the prevention of neurodegenerative diseases by lithium. CNS Neurosci Ther.2009;15(4):333–344. [
PubMed]
292. Su Y, Ryder J, Li B, Wu X, Fox N, Solenberg P, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry. 2004;43(22):6899–6908.[
PubMed]
293. Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature. 2003;423(6938):435–439. [
PubMed]
294. Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, et al. A novel GSK-3beta inhibitor reduces Alzheimer’s pathology and rescues neuronal loss
in vivo. Neurobiol Dis. 2009;35(3):359–367. [
PubMed]
295. Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol.2007;170(5):1669–1675. [
PMC free article] [
PubMed]
296. Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N. Lithium and dementia: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(6):1125–1128. [
PubMed]
297. Nunes PV, Forlenza OV, Gattaz WF. Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry. 2007;190:359–360. [
PubMed]
298. Zhong J, Lee WH. Lithium: a novel treatment for Alzheimer’s disease? Expert Opin Drug Saf.2007;6(4):375–383. [
PubMed]
299. Kessing LV, Sondergard L, Forman JL, Andersen PK. Lithium treatment and risk of dementia. Arch Gen Psychiatry. 2008;65(11):1331–1335. [
PubMed]
300. Yeh HL, Tsai SJ. Lithium may be useful in the prevention of Alzheimer’s disease in individuals at risk of presenile familial Alzheimer’s disease. Med Hypotheses. 2008;71(6):948–951. [
PubMed]
301. Hampel H, Ewers M, Burger K, Annas P, Mortberg A, Bogstedt A, et al. Lithium trial in Alzheimer’s disease: a randomized, single-blind, placebo-controlled, multicenter 10-week study. J Clin Psychiatry.2009;70(6):922–931. [
PubMed]
302. Espinosa L, Ingles-Esteve J, Aguilera C, Bigas A. Phosphorylation by glycogen synthase kinase-3 beta down-regulates Notch activity, a link for Notch and Wnt pathways. J Biol Chem.2003;278(34):32227–32235. [
PubMed]
303. Foltz DR, Santiago MC, Berechid BE, Nye JS. Glycogen synthase kinase-3beta modulates notch signaling and stability. Curr Biol. 2002;12(12):1006–1011. [
PubMed]
304. Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12(11):1390–1397. [
PubMed]
305. Shimizu T, Kagawa T, Inoue T, Nonaka A, Takada S, Aburatani H, et al. Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol. 2008;28(24):7427–7441.[
PMC free article] [
PubMed]
306. Watson GS, Bernhardt T, Reger MA, Cholerton BA, Baker LD, Peskind ER, et al. Insulin effects on CSF norepinephrine and cognition in Alzheimer’s disease. Neurobiol Aging. 2006;27(1):38–41. [
PubMed]
307. Galasko D. Insulin and Alzheimer’s disease: an amyloid connection. Neurology. 2003;60(12):1886–1887. [
PubMed]
308. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimers Dis. 2008;13(3):323–331. [
PMC free article] [
PubMed]
309. Perry T, Greig NH. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr Alzheimer Res. 2005;2(3):377–385. [
PubMed]
310. Li L. Is Glucagon-like peptide-1, an agent treating diabetes, a new hope for Alzheimer’s disease?Neurosci Bull. 2007;23(1):58–65. [
PubMed]
311. Liu J, Yin F, Zheng X, Jing J, Hu Y. Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem Int. 2007;51(6-7):361–369. [
PubMed]
312. Biswas SC, Buteau J, Greene LA. Glucagon-like peptide-1 GLP-1 diminishes neuronal degeneration and death caused by NGF deprivation by suppressing Bim induction. Neurochem Res. 2008;33(9):1845–1851. [
PubMed]
313. Liu JH, Yin F, Guo LX, Deng XH, Hu YH. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacol Sin.2009;30(2):159–165. [
PMC free article] [
PubMed]
314. D’Amico M, Di Filippo C, Marfella R, Abbatecola AM, Ferraraccio F, Rossi F, et al. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp Gerontol. 2010;45(3):202–207.[
PubMed]
315. Holscher C. Incretin analogues that have been developed to treat type 2 diabetes hold promise as a novel treatment strategy for Alzheimer’s disease. Recent Pat CNS Drug Discov. 2010;5(2):109–117.[
PubMed]
316. Perry T, Haughey NJ, Mattson MP, Egan JM, Greig NH. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J Pharmacol Exp Ther. 2002;302(3):881–888.[
PubMed]
317. McClean PL, Gault VA, Harriott P, Holscher C. Glucagon-like peptide-1 analogues enhance synaptic plasticity in the brain: a link between diabetes and Alzheimer’s disease. Eur J Pharmacol. 2010;630(1-3):158–162. [
PubMed]
318. Harkavyi A, Whitton PS. Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection.Br J Pharmacol. 2010;159(3):495–501. [
PMC free article] [
PubMed]
319. Holscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging. 2010;31(9):1495–1502. [
PubMed]
320. Ma YH, Zhang Y, Cao L, Su JC, Wang ZW, Xu AB, et al. Effect of neurotrophin-3 genetically modified olfactory ensheathing cells transplantation on spinal cord injury. Cell Transplant.2010;19(2):167–177. [
PubMed]
321. Wakabayashi K, Nagai A, Sheikh AM, Shiota Y, Narantuya D, Watanabe T, et al. Transplantation of human mesenchymal stem cells promotes functional improvement and increased expression of neurotrophic factors in a rat focal cerebral ischemia model. J Neurosci Res. 2010;88(5):1017–1025.[
PubMed]
322. Liu J, Zhang Z, Li JT, Zhu YH, Zhou HL, Liu S, et al. Effects of NT-4 gene modified fibroblasts transplanted into AD rats. Neurosci Lett. 2009;466(1):1–5. [
PubMed]
323. Heile AM, Wallrapp C, Klinge PM, Samii A, Kassem M, Silverberg G, et al. Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett. 2009;463(3):176–181. [
PubMed]
324. Correia S, Carvalho C, Santos MS, Seica R, Oliveira CR, Moreira PI. Mechanisms of action of metformin in type 2 diabetes and associated complications: an overview. Mini Rev Med Chem.2008;8(13):1343–1354. [
PubMed]
325. Chen Y, Zhou K, Wang R, Liu Y, Kwak YD, Ma T, et al. Antidiabetic drug metformin GlucophageR increases biogenesis of Alzheimer’s amyloid peptides via up-regulating BACE1 transcription. Proc Natl Acad Sci U S A. 2009;106(10):3907–3912. [
PMC free article] [
PubMed]
326. Kaundal RK, Sharma SS. Peroxisome proliferator-activated receptor gamma agonists as neuroprotective agents. Drug News Perspect. 2010;23(4):241–256. [
PubMed]
327. Strum JC, Shehee R, Virley D, Richardson J, Mattie M, Selley P, et al. Rosiglitazone induces mitochondrial biogenesis in mouse brain. J Alzheimers Dis. 2007;11(1):45–51. [
PubMed]
328. Hanyu H, Sato T. Alzheimer’s disease. Nippon Rinsho. 2010;68(2):330–334. [
PubMed]
329. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–1830.[
PMC free article] [
PubMed]
330. Pedersen WA, McMillan PJ, Kulstad JJ, Leverenz JB, Craft S, Haynatzki GR. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp Neurol. 2006;199(2):265–273.[
PubMed]
331. Haan MN. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease.Nat Clin Pract Neurol. 2006;2(3):159–166. [
PubMed]
332. Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, et al. Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: a preliminary study. Am J Geriatr Psychiatry. 2005;13(11):950–958. [
PubMed]
333. Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, et al. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease.Pharmacogenomics J. 2006;6(4):246–254. [
PubMed]
334. Gold M, Alderton C, Zvartau-Hind M, Egginton S, Saunders AM, Irizarry M, et al. Rosiglitazone monotherapy in mild-to-moderate alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement Geriatr Cogn Disord. 2010;30(2):131–146. [
PMC free article] [
PubMed]
335. Maczurek A, Hager K, Kenklies M, Sharman M, Martins R, Engel J, et al. Lipoic acid as an anti-inflammatory and neuroprotective treatment for Alzheimer’s disease. Adv Drug Deliv Rev. 2008;60(13-14):1463–1470. [
PubMed]
336. Markesbery WR, Carney JM. Oxidative alterations in Alzheimer’s disease. Brain Pathol.1999;9(1):133–146. [
PubMed]
337. Sayre LM, Zelasko DA, Harris PL, Perry G, Salomon RG, Smith MA. 4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer’s disease. J Neurochem.1997;68(5):2092–2097. [
PubMed]
338. de la Monte SM. Molecular abnormalities of the brain in Down syndrome: relevance to Alzheimer’s neurodegeneration. J Neural Transm. 1999;S57:1–19. [
PubMed]
339. de la Monte SM, Bloch KD. Aberrant expression of the constitutive endothelial nitric oxide synthase gene in Alzheimer disease. Mol Chem Neuropathol. 1997;30(1-2):139–159. [
PubMed]
340. de la Monte SM, Chiche J, von dem Bussche A, Sanyal S, Lahousse SA, Janssens SP, et al. Nitric oxide synthase-3 overexpression causes apoptosis and impairs neuronal mitochondrial function: relevance to Alzheimer’s-type neurodegeneration. Lab Invest. 2003;83(2):287–298. [
PubMed]
341. de la Monte SM, Jhaveri A, Maron BA, Wands JR. Nitric oxide synthase 3-mediated neurodegeneration after intracerebral gene delivery. J Neuropathol Exp Neurol. 2007;66(4):272–283.[
PubMed]
342. Anderson RA. Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr.1997;16(5):404–410. [
PubMed]
343. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nut. 1998;17(6):548–55.[
PubMed]
344. Vincent JB. The biochemistry of chromium. J Nutr. 2000;130(4):715–718. [
PubMed]
345. A scientific review: the role of chromium in insulin resistance. Diabetes Educ Suppl. 2004:2–14.[
PubMed]
346. Hummel M, Standl E, Schnell O. Chromium in metabolic and cardiovascular disease. Horm Metab Res. 2007;39(10):743–751. [
PubMed]
347. Anton SD, Morrison CD, Cefalu WT, Martin CK, Coulon S, Geiselman P, et al. Effects of chromium picolinate on food intake and satiety. Diabetes Technol Ther. 2008;10(5):405–412. [
PMC free article][
PubMed]
348. Stout MD, Nyska A, Collins BJ, Witt KL, Kissling GE, Malarkey DE, et al. Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years. Food Chem Toxicol. 2009;47(4):729–733. [
PMC free article] [
PubMed]
349. Lamson DW, Plaza SM. The safety and efficacy of high-dose chromium. Altern Med Rev.2002;7(3):218–235. [
PubMed]
350. Broadhurst CL, Domenico P. Clinical studies on chromium picolinate supplementation in diabetes mellitus–a review. Diabetes Technol Ther. 2006;8(6):677–687. [
PubMed]
351. Smorgon C, Mari E, Atti AR, Dalla Nora E, Zamboni PF, Calzoni F, et al. Trace elements and cognitive impairment: an elderly cohort study. Arch Gerontol Geriatr. 2004;S9:393–402. [
PubMed]
352. Krikorian R, Eliassen JC, Boespflug EL, Nash TA, Shidler MD. Improved cognitive-cerebral function in older adults with chromium supplementation. Nutr Neurosci. 2010;13(3):116–122. [
PubMed]
353. Marlatt MW, Lucassen PJ, Perry G, Smith MA, Zhu X. Alzheimer’s disease: cerebrovascular dysfunction, oxidative stress, and advanced clinical therapies. J Alzheimers Dis. 2008;15(2):199–210.[
PMC free article] [
PubMed]
354. Blasko I, Jungwirth S, Jellinger K, Kemmler G, Krampla W, Weissgram S, et al. Effects of medications on plasma amyloid beta (Abeta) 42: longitudinal data from the VITA cohort. J Psychiatr Res.2008;42(11):946–955. [
PubMed]
355. Pratico D. Evidence of oxidative stress in Alzheimer’s disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci. 2008;1147:70–78. [
PubMed]
356. Lee HP, Zhu X, Casadesus G, Castellani RJ, Nunomura A, Smith MA, et al. Antioxidant approaches for the treatment of Alzheimer’s disease. Expert Rev Neurother. 10(7):1201–1208. [
PubMed]
357. Townsend KP, Pratico D. Novel therapeutic opportunities for Alzheimer’s disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J. 2005;19(12):1592–1601. [
PubMed]
358. Szekely CA, Zandi PP. Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: the epidemiological evidence. CNS Neurol Disord Drug Targets. 2010;9(2):132–139. [
PubMed]
359. Weggen S, Rogers M, Eriksen J. NSAIDs: small molecules for prevention of Alzheimer’s disease or precursors for future drug development? Trends Pharmacol Sci. 2007;28(10):536–543. [
PubMed]
360. Rosenberg PB. Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry.2005;17(6):503–514. [
PubMed]
361. Sastre M, Klockgether T, Heneka MT. Contribution of inflammatory processes to Alzheimer’s disease: molecular mechanisms. Int J Dev Neurosci. 2006;24(2-3):167–176. [
PubMed]
362. Cole GM, Frautschy SA. Mechanisms of action of non-steroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9(2):140–148. [
PubMed]
363. Cakala M, Strosznajder JB. The role of cyclooxygenases in neurotoxicity of amyloid beta peptides in Alzheimer’s disease. Neurol Neurochir Pol. 2010;44(1):65–79. [
PubMed]
364. Janicki SC, Schupf N. Hormonal influences on cognition and risk for Alzheimer’s disease. Curr Neurol Neurosci Rep. 2010;10(5):359–366. [
PMC free article] [
PubMed]
365. Henderson VW. Aging, estrogens, and episodic memory in women. Cogn Behav Neurol.2009;22(4):205–214. [
PMC free article] [
PubMed]
366. Henderson VW. Action of estrogens in the aging brain: dementia and cognitive aging. Biochim Biophys Acta. 2010;1800(10):1077–1083. [
PubMed]
367. Blanc F, Poisbeau P, Sellal F, Tranchant C, de Seze J, Andre G. Alzheimer disease, memory and estrogen. Rev Neurol (Paris) 2010;166(4):377–388. [
PubMed]
368. Henderson VW. Estrogens, episodic memory, and Alzheimer’s disease: a critical update. Semin Reprod Med. 2009;27(3):283–293. [
PMC free article] [
PubMed]
369. Kandiah N, Feldman HH. Therapeutic potential of statins in Alzheimer’s disease. J Neurol Sci.2009;283(1-2):230–234. [
PubMed]
370. Biondi E. Statin-like drugs for the treatment of brain cholesterol loss in Alzheimer’s disease. Curr Drug Saf. 2007;2(3):173–176. [
PubMed]
371. McGuinness B, O’Hare J, Craig D, Bullock R, Malouf R, Passmore P. Statins for the treatment of dementia. (CD007514).Cochrane Database Syst Rev. 2010;8 [
PubMed]
372. Waters DD. Exploring new indications for statins beyond atherosclerosis: Successes and setbacks. J Cardiol. 2010;55(2):155–162. [
PubMed]
373. Feldman HH, Doody RS, Kivipelto M, Sparks DL, Waters DD, Jones RW, et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology. 2010 Mar 23;74(12):956–64. [
PubMed]
374. McGuinness B, Passmore P. Can statins prevent or help treat Alzheimer’s disease? J Alzheimers Dis.2010;20(3):925–933. [
PubMed]
375. Cramer C, Haan MN, Galea S, Langa KM, Kalbfleisch JD. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology. 2008;71(5):344–350.[
PMC free article] [
PubMed]
376. Vos E, Nehrlich HH. Use of statins and incidence of dementia and cognitive impairment without dementia in a cohort study. Neurology. 2009;73(5):406. [
PubMed]
377. Piermartiri TC, Figueiredo CP, Rial D, Duarte FS, Bezerra SC, Mancini G, et al. Atorvastatin prevents hippocampal cell death, neuroinflammation and oxidative stress following amyloid-beta(1-40) administration in mice: evidence for dissociation between cognitive deficits and neuronal damage. Exp Neurol. 2010;226(2):274–284. [
PubMed]
378. Sparks DL, Kryscio RJ, Connor DJ, Sabbagh MN, Sparks LM, Lin Y, et al. Cholesterol and cognitive performance in normal controls and the influence of elective statin use after conversion to mild cognitive impairment: results in a clinical trial cohort. Neurodegener Dis. 2010;7(1-3):183–186. [
PMC free article][
PubMed]
379. Glasser SP, Wadley V, Judd S, Kana B, Prince V, Jenny N, et al. The association of statin use and statin type and cognitive performance: analysis of the reasons for geographic and racial differences in stroke (REGARDS) study. Clin Cardiol. 2010;33(5):280–288. [
PMC free article] [
PubMed]
380. Galatti L, Polimeni G, Salvo F, Romani M, Sessa A, Spina E. Short-term memory loss associated with rosuvastatin. Pharmacotherapy. 2006;26(8):1190–1192. [
PubMed]
381. King DS, Wilburn AJ, Wofford MR, Harrell TK, Lindley BJ, Jones DW. Cognitive impairment associated with atorvastatin and simvastatin. Pharmacotherapy. 2003;23(12):1663–1667. [
PubMed]
382. Wagstaff LR, Mitton MW, Arvik BM, Doraiswamy PM. Statin-associated memory loss: analysis of 60 case reports and review of the literature. Pharmacotherapy. 2003;23(7):871–880. [
PubMed]
383. van Vliet P, van de Water W, de Craen AJ, Westendorp RG. The influence of age on the association between cholesterol and cognitive function. Exp Gerontol. 2009;44(1-2):112–122. [
PubMed]
384. Liu XP, Goldring CE, Wang HY, Copple IM, Kitteringham NR, Park BK, et al. Extract of Ginkgo biloba induces glutamate cysteine ligase catalytic subunit (GCLC) Phytother Res. 2008;22(3):367–371.[
PubMed]
385. Mashayekh A, Pham DL, Yousem DM, Dizon M, Barker PB, Lin DD. Effects of Ginkgo biloba on cerebral blood flow assessed by quantitative MR perfusion imaging: a pilot study. Neuroradiology.2011;53(3):185–191. [
PMC free article] [
PubMed]
386. DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, et al. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008;300(19):2253–2262.[
PMC free article] [
PubMed]
387. McCarney R, Fisher P, Iliffe S, van Haselen R, Griffin M, van der Meulen J, et al. Ginkgo biloba for mild to moderate dementia in a community setting: a pragmatic, randomised, parallel-group, double-blind, placebo-controlled trial. Int J Geriatr Psychiatry. 2008;23(12):1222–1230. [
PubMed]
388. Dodge HH, Zitzelberger T, Oken BS, Howieson D, Kaye J. A randomized placebo-controlled trial of Ginkgo biloba for the prevention of cognitive decline. Neurology. 2008;70(2):1809–1817.[
PMC free article] [
PubMed]
389. Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761 by type of dementia: analyses of a randomised controlled trial. J Neurol Sci. 2009;283(1-2):224–229.[
PubMed]
390. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN. Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr. 2010;10:14. [
PMC free article] [
PubMed]
391. Wang BS, Wang H, Song YY, Qi H, Rong ZX, Zhang L, et al. Effectiveness of standardized ginkgo biloba extract on cognitive symptoms of dementia with a six-month treatment: a bivariate random effect meta-analysis. Pharmacopsychiatry. 2010;43(3):86–91. [
PubMed]
392. Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;1:CD003120. [
PubMed]
393. Savory J, Exley C, Forbes WF, Huang Y, Joshi JG, Kruck T, et al. Can the controversy of the role of aluminum in Alzheimer’s disease be resolved? What are the suggested approaches to this controversy and methodological issues to be considered? J Toxicol Environ Health. 1996;48(6):615–635. [
PubMed]
394. Newman PE. Could diet be one of the causal factors of Alzheimer’s disease? Med Hypotheses.1992;39(2):123–126. [
PubMed]
395. Domingo JL. Aluminum and other metals in Alzheimer’s disease: a review of potential therapy with chelating agents. J Alzheimers Dis. 2006;10(2-3):331–341. [
PubMed]
396. Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Jr, Cohen ML, et al. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis.2010;19(1):363–372. [
PMC free article] [
PubMed]
397. Shin RW, Kruck TP, Murayama H, Kitamoto T. A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer’s disease. Brain Res.2003;961(1):139–146. [
PubMed]
398. House E, Collingwood J, Khan A, Korchazkina O, Berthon G, Exley C. Aluminium, iron, zinc and copper influence the
in vitro formation of amyloid fibrils of Abeta42 in a manner which may have consequences for metal chelation therapy in Alzheimer’s disease. J Alzheimers Dis. 2004;6(3):291–301.[
PubMed]
399. Atamna H, Frey WH., 2nd A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci U S A. 2004;101(30):11153–11158. [
PMC free article] [
PubMed]
400. Gouras GK, Beal MF. Metal chelator decreases Alzheimer beta-amyloid plaques. Neuron.2001;30(3):641–642. [
PubMed]
401. Gnjec A, Fonte JA, Atwood C, Martins RN. Transition metal chelator therapy–a potential treatment for Alzheimer’s disease? Front Biosci. 2002;7:1016–1023. [
PubMed]
402. Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, et al. Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord. 2001;12(6):408–414. [
PubMed]
403. Crapper McLachlan DR, Dalton AJ, Kruck TP, Bell MY, Smith WL, Kalow W, et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet. 1991;337(8753):1304–1308. [
PubMed]
404. Ibach B, Haen E, Marienhagen J, Hajak G. Clioquinol treatment in familiar early onset of Alzheimer’s disease: a case report. Pharmacopsychiatry. 2005;38(4):178–179. [
PubMed]
405. Priel T, Aricha-Tamir B, Sekler I. Clioquinol attenuates zinc-dependent beta-cell death and the onset of insulitis and hyperglycemia associated with experimental type I diabetes in mice. Eur J Pharmacol.2007;565(1-3):232–239. [
PubMed]
406. Fischer LJ, Hamburger SA. Inhibition of alloxan action in isolated pancreatic islets by superoxide dismutase, catalase, and a metal chelator. Diabetes. 1980;29(3):213–216. [
PubMed]
407. Cutler P. Deferoxamine therapy in high-ferritin diabetes. Diabetes. 1989;38(10):1207–1210. [
PubMed]
408. Dongiovanni P, Valenti L, Ludovica Fracanzani A, Gatti S, Cairo G, Fargion S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol. 2008;172(3):738–747. [
PMC free article] [
PubMed]
409. Cooksey RC, Jones D, Gabrielsen S, Huang J, Simcox JA, Luo B, et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am J Physiol Endocrinol Metab. 2010;298(6):E1236–1243. [
PMC free article] [
PubMed]
410. Venters HD, Jr, Bonilla LE, Jensen T, Garner HP, Bordayo EZ, Najarian MM, et al. Heme from Alzheimer’s brain inhibits muscarinic receptor binding via thiyl radical generation. Brain Res. 1997;764(1-2):93–100. [
PubMed]
411. Zheng H, Weiner LM, Bar-Am O, Epsztejn S, Cabantchik ZI, Warshawsky A, et al. Design, synthesis, and evaluation of novel bifunctional iron-chelators as potential agents for neuroprotection in Alzheimer’s, Parkinson’s, and other neurodegenerative diseases. Bioorg Med Chem. 2005;13(3):773–783. [
PubMed]
412. Liu G, Men P, Perry G, Smith MA. Development of iron chelator-nanoparticle conjugates as potential therapeutic agents for Alzheimer disease. Prog Brain Res. 2009;180:97–108. [
PubMed]
413. Lee JY, Friedman JE, Angel I, Kozak A, Koh JY. The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human beta-amyloid precursor protein transgenic mice. Neurobiol Aging.2004;25(10):1315–1321. [
PubMed]
414. Liu G, Garrett MR, Men P, Zhu X, Perry G, Smith MA. Nanoparticle and other metal chelation therapeutics in Alzheimer disease. Biochim Biophys Acta. 2005;1741(3):246–252. [
PubMed]
415. Liu G, Men P, Harris PL, Rolston RK, Perry G, Smith MA. Nanoparticle iron chelators: a new therapeutic approach in Alzheimer disease and other neurologic disorders associated with trace metal imbalance. Neurosci Lett. 2006;406(3):189–193. [
PubMed]
416. Liu G, Men P, Perry G, Smith MA. Nanoparticle and iron chelators as a potential novel Alzheimer therapy. Methods Mol Biol. 2010;610:123–144. [
PMC free article] [
PubMed]
417. Liu G, Men P, Kudo W, Perry G, Smith MA. Nanoparticle-chelator conjugates as inhibitors of amyloid-beta aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease. Neurosci Lett. 2009;455(3):187–190. [
PMC free article] [
PubMed]
418. Zheng H, Youdim MB, Fridkin M. Site-activated multifunctional chelator with acetylcholinesterase and neuroprotective-neurorestorative moieties for Alzheimer’s therapy. J Med Chem. 2009;52(14):4095–4098. [
PubMed]
419. Zheng H, Youdim MB, Fridkin M. Site-activated chelators targeting acetylcholinesterase and monoamine oxidase for Alzheimer’s therapy. ACS Chem Biol. 2010;5(6):603–610. [
PubMed]
420. Huang W, Lv D, Yu H, Sheng R, Kim SC, Wu P, et al. Dual-target-directed 1,3-diphenylurea derivatives: BACE 1 inhibitor and metal chelator against Alzheimer’s disease. Bioorg Med Chem.2010;18(15):5610–5615. [
PubMed]
421. Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56(13):4855–4873. [
PubMed]
422. Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res. 2009;15(1):3–14. [
PubMed]
423. Dasilva KA, Shaw JE, McLaurin J. Amyloid-beta fibrillogenesis: structural insight and therapeutic intervention. Exp Neurol. 2010;223(2):311–321. [
PubMed]
424. Janle EM, Lila MA, Grannan M, Wood L, Higgins A, Yousef GG, et al. Pharmacokinetics and tissue distribution of 14C-labeled grape polyphenols in the periphery and the central nervous system following oral administration. J Med Food. 2010;13(4):926–933. [
PMC free article] [
PubMed]
425. Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Muller-Spahn F. Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology. 2003;49(6):380–383. [
PubMed]
426. Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci. 2008;9(S2):S6. [
PMC free article] [
PubMed]
427. Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int.2009;54(2):111–118. [
PMC free article] [
PubMed]
428. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem. 2005;280(45):37377–37382. [
PubMed]
429. Vingtdeux V, Giliberto L, Zhao H, Chandakkar P, Wu Q, Simon JE, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J Biol Chem.2010;285(12):9100–9113. [
PMC free article] [
PubMed]
430. Dore S. Unique properties of polyphenol stilbenes in the brain: more than direct antioxidant actions; gene/protein regulatory activity. Neurosignals. 2005;14(1-2):61–70. [
PubMed]
431. Ramesh BN, Rao TS, Prakasam A, Sambamurti K, Rao KS. Neuronutrition and Alzheimer’s disease. J Alzheimers Dis. 2010;19(4):1123–1139. [
PMC free article] [
PubMed]
432. Anekonda TS. Resveratrol–a boon for treating Alzheimer’s disease? Brain Res Rev. 2006;52(2):316–326. [
PubMed]
433. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction.J Biol Chem. 2006;281(31):21745–21754. [
PubMed]
434. Wang J, Fivecoat H, Ho L, Pan Y, Ling E, Pasinetti GM. The role of Sirt1: at the crossroad between promotion of longevity and protection against Alzheimer’s disease neuropathology. Biochim Biophys Acta.2010;1804(8):1690–1694. [
PubMed]
435. Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis.EMBO J. 2007;26(13):3169–3179. [
PMC free article] [
PubMed]
436. Qin W, Chachich M, Lane M, Roth G, Bryant M, et al. Calorie restriction attenuates Alzheimer’s disease type brain amyloidosis in Squirrel monkeys (Saimiri sciureus) J Alzheimers Dis. 2006;10(4):417–422. [
PubMed]
437. Qin W, Zhao W, Ho L, Wang J, Walsh K, Gandy S, et al. Regulation of forkhead transcription factor FoxO3a contributes to calorie restriction-induced prevention of Alzheimer’s disease-type amyloid neuropathology and spatial memory deterioration. Ann N Y Acad Sci. 2008;1147:335–347.[
PMC free article] [
PubMed]
438. Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, et al. Effects of green tea on gene expression of hepatic gluconeogenic enzymes
in vivo. Planta Med. 2004;70(11):1100–1102. [
PubMed]
439. Obregon DF, Rezai-Zadeh K, Bai Y, Sun N, Hou H, Ehrhart J, et al. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced alpha-secretase cleavage of amyloid precursor protein.J Biol Chem. 2006;281(24):16419–16427. [
PubMed]
440. Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG) J Alzheimers Dis. 2008;15(2):211–222. [
PubMed]
441. Mandel SA, Amit T, Weinreb O, Reznichenko L, Youdim MB. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther. 2008;14(4):352–365. [
PubMed]
442. Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. Int J Pharm. 2010;389(1-2):207–212. [
PubMed]
443. Ray B, Lahiri DK. Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol. 2009;9(4):434–444. [
PubMed]
444. Fiala M. Re-balancing of inflammation and abeta immunity as a therapeutic for Alzheimer’s disease-view from the bedside. CNS Neurol Disord Drug Targets. 2010;9(2):192–196. [
PubMed]
445. Suryanarayana P, Satyanarayana A, Balakrishna N, Kumar PU, Reddy GB. Effect of turmeric and curcumin on oxidative stress and antioxidant enzymes in streptozotocin-induced diabetic rat. Med Sci Monit. 2007;13(12):BR286–292. [
PubMed]
446. Pari L, Murugan P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren Fail. 2007;29(7):881–889. [
PubMed]
447. Wang SL, Li Y, Wen Y, Chen YF, Na LX, Li ST, et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway.Biomed Environ Sci. 2009;22(1):32–39. [
PubMed]
448. Rezende LF, Vieira AS, Negro A, Langone F, Boschero AC. Ciliary neurotrophic factor (CNTF) signals through STAT3-SOCS3 pathway and protects rat pancreatic islets from cytokine-induced apoptosis.Cytokin. 2009;46(1):65–71. [
PubMed]
449. Kang C, Kim E. Synergistic effect of curcumin and insulin on muscle cell glucose metabolism. Food Chem Toxicol. 2010;48(8-9):2366–2373. [
PubMed]
450. Abdel Aziz MT, El-Asmar MF, El Nadi EG, Wassef MA, Ahmed HH, Rashed LA, et al. The effect of curcumin on insulin release in rat-isolated pancreatic islets. Angiology. 2010;61(6):557–566. [
PubMed]
451. Karthikesan K, Pari L, Menon VP. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen Physiol Biophys. 2010;29(1):23–30. [
PubMed]
452. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, et al. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice.Mol Nutr Food Res. 2008;52(9):995–1004. [
PubMed]
453. Peeyush KT, Gireesh G, Jobin M, Paulose CS. Neuroprotective role of curcumin in the cerebellum of streptozotocin-induced diabetic rats. Life Sci. 2009;85(19-20):704–710. [
PubMed]
454. Pari L, Murugan P. Tetrahydrocurcumin prevents brain lipid peroxidation in streptozotocin-induced diabetic rats. J Med Food. 2007;10(2):323–329. [
PubMed]
455. Scheltens P. Moving forward with nutrition in Alzheimer’s disease. Eur J Neurol. 2009;16(S1):19–22.[
PubMed]
456. Bourre JM. The role of nutritional factors on the structure and function of the brain: an update on dietary requirements. Rev Neurol (Paris) 2004;160(8-9):767–792. [
PubMed]
457. Kidd PM. Alzheimer’s disease, amnestic mild cognitive impairment, and age-associated memory impairment: current understanding and progress toward integrative prevention. Altern Med Rev.2008;13(2):85–115. [
PubMed]
458. Cole GM, Ma QL, Frautschy SA. Omega-3 fatty acids and dementia. Prostaglandins Leukot Essent Fatty Acids. 2009;81(2-3):213–221. [
PMC free article] [
PubMed]
459. Jicha GA, Markesbery WR. Omega-3 fatty acids: potential role in the management of early Alzheimer’s disease. Clin Interv Aging. 2010;5:45–61. [
PMC free article] [
PubMed]
460. Cederholm T, Palmblad J. Are omega-3 fatty acids options for prevention and treatment of cognitive decline and dementia? Curr Opin Clin Nutr Metab Care. 2010;13(2):150–155. [
PubMed]
461. Fotuhi M, Mohassel P, Yaffe K. Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association. Nat Clin Pract Neurol. 2009;5(3):140–152.[
PubMed]
462. Pauwels EK, Volterrani D, Mariani G, Kairemo K. Fatty acid facts, Part IV: docosahexaenoic acid and Alzheimer’s disease. A story of mice, men and fish. Drug News Perspect. 2009;22(4):205–213. [
PubMed]
463. Wurtman RJ, Cansev M, Ulus IH. Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J Nutr Health Aging. 2009;13(3):189–197.[
PubMed]
464. Luchsinger JA, Noble JM, Scarmeas N. Diet and Alzheimer’s disease. Curr Neurol Neurosci Rep.2007;7(5):366–372. [
PubMed]
465. Baker LD, Frank LL, Foster-Schubert K, Green PS, Wilkinson CW, McTiernan A, et al. Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Arch Neurol. 2010;67(1):71–79.[
PMC free article] [
PubMed]
466. Um HS, Kang EB, Leem YH, Cho IH, Yang CH, Chae KR, et al. Exercise training acts as a therapeutic strategy for reduction of the pathogenic phenotypes for Alzheimer’s disease in an NSE/APPsw-transgenic model. Int J Mol Med. 2008;22(4):529–539. [
PubMed]
467. Adlard PA, Perreau VM, Pop V, Cotman CW. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci. 2005;25(17):4217–4221. [
PubMed]
468. Mouton PR, Chachich ME, Quigley C, Spangler E, Ingram DK. Caloric restriction attenuates amyloid deposition in middle-aged dtg APP/PS1 mice. Neurosci Lett. 2009;464(3):184–187. [
PMC free article][
PubMed]
469. Pasinetti GM, Zhao Z, Qin W, Ho L, Shrishailam Y, Macgrogan D, et al. Caloric intake and Alzheimer’s disease. Experimental approaches and therapeutic implications. Interdiscip Top Gerontol.2007;35:159–175. [
PubMed]
470. Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet.2000;25(3):294–297. [
PubMed]
471. McCarty MF. Toward prevention of Alzheimers disease–potential nutraceutical strategies for suppressing the production of amyloid beta peptides. Med Hypotheses. 2006;67(4):682–697. [
PubMed]
472. Cole GM, Frautschy SA. The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease. Exp Gerontol. 2007;42(1-2):10–21. [
PubMed]
473. Mattson MP. Will caloric restriction and folate protect against AD and PD? Neurology.2003;60(4):690–695. [
PubMed]
474. Frautschy SA, Cole GM. Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol. 2010;41(2-3):392–409. [
PMC free article] [
PubMed]
475. Coley N, Andrieu S, Gardette V, Gillette-Guyonnet S, Sanz C, Vellas B, et al. Dementia prevention: methodological explanations for inconsistent results. Epidemiol Rev. 2008;30:35–66. [
PubMed]
476. Kelley BJ, Knopman DS. Alternative medicine and Alzheimer disease. Neurologist. 2008;14(5):299–306. [
PMC free article] [
PubMed]
477. Solomon PR, Michalczuk DE. Toward establishing guidelines for evaluating cognitive enhancement with complementary and alterative medicines. Eval Health Prof. 2009;32(4):370–392. [
PubMed]